
#6.100A in 2 Hours
Michael Samuel and Ignacio Guzman

#Class Structure

Lecture will be divided into 4 sections:

● Data, Structures, and Iteration
● Algorithms and Time Complexity
● Functions and Recursion
● Classes and Object Oriented Programming (OOP)

Key Info:

● We will be alternating every other section, with the other being at the “help desk”.
Feel free during lecture to stand up and approach the “help desk” for any questions
you have from the previous or current sections.

● Also feel free to submit questions to the slido at any time
● You will be able to find the Slides and files after this class on the Splash website.

#Section 1:
Data Structures and

Iteration

Data Structures

Brief Introduction to Objects

Objects have a type that defines their characteristics and the functions that can
operate with them.

Scalar vs. Non-Scalar Objects:

- Scalar objects are the “simplest objects” while non-scalar objects have
internal structures

- Scalar Objects: int, float, bool, NoneType
- Non-Scalar Objects: Strings, Lists, Tuples, and Dictionaries

- Compound Data Types: Strings, Lists, and Tuples
- Indexed sequence of elements whose elements may be compound data types

themselves.

Operators and Expressions

Operators on Scalar Objects:

- Addition (+), Subtraction (-), Multiplication (*), Float Division (/), Floor Division
(//), Modulus (%), Exponentiation (**)

To combine objects and operators, you can use expressions. Expressions have a
value and a type depending on the objects.

The form is: <object> <operator> <object>

Variables, Assignment, and Binding

Programming Variables != Math Variables

● The former stores a single value while the latter is abstract and can represent
many values.

To assign a value to a variable, you use the equal sign, “=”. This binds the variable
object to the value object in computer memory. (Distinct objects)

● Variables can be re-binded through new value assignment statements.

Floats and Approximations

Binary is used by computers since it allows computer hardware to store
information as 0s and 1s.

● For integer numbers, binary is easy to use; however, non-integers make it
difficult to use.

○ To combat this they used floating point numbers that carry significant digits and an exponent
■ Ex: 6.25 = 25 * 2^-2 = 25/4
■ If the number cannot be rewritten in the form x*(2^p) then it will always be represented

as an approximation
● To test floats, never use == as a result of approximations. To test use an

epsilon.

Variable Naming

Inputting and Printing

Input:

To assign input from the user and bind it to a variable, you would use the format:

<object> = input(request_message) # request message is a string

Warning:

>>> type(<object>)

str

Print:

To explicitly display results, you would use the format:

print(<object>, …)

Strings (str)

Strings are a sequence of case sensitive characters that are enclosed in either “”
or ‘’.

Operator Overloading - When an operator applies to objects that are of different
types

● Ex: Concatenation

String Operations:

● len() => gives the length of a string
● Comparison operators: <, >, ==, and others

○ Uppercase < lowercase since based on Unicode order
● Binary Operator: in

Indexing, Slicing, and F-Strings

Strings can be indexed, meaning that characters or strings can be retrieved by referring to their
index.

Slicing

● Format: [start:stop:step]
○ [start:stop] if step = 1
○ Characters are retrieved up to “stop-1”th index
○ Helpful ones to remember:

■ s[:] == s[0:len(s):1]
■ s[-1:-(len(s)+1):-1] #reflects the string

We can add variables into strings using concatenation; however, this does not take into account
on how it is displayed.

● F-Strings take care of this by allowing you to insert {object} into your string.
○ {object:,.yf} # y is a natural number (i.e. 0, 1, 2,...)

Tuples

Tuples are immutable indexable ordered sequences of objects. Just like with
strings, they are indexed and sliced in the same manner.

Notes:

● te = ()
● ts = (2,) # (2,) != (2)

Lists

Lists are mutable indexable ordered sequences of objects (a.k.a. Mutable tuples). Just like with strings and tuples,
they are indexed and sliced in the same manner.

If L = [,,,]

● len(L) # gives length
● max(L) # gives maximum value
● L.append(<object>) # adds the object to the list, but returns None
● L.sort() # mutates L and returns None

○ sorted(L) # returns a new sorted list without mutating L
● L.reverse() # mutates L, but returns None
● L.extend(<list>) # adds a list and mutates L
● del L[index] # deletes the element at that index and mutates L
● L.remove(element) # removes the first occurrence of the element, mutates L
● L.pop() # removes the last element of L and returns that element; index can be specified, mutates L

Lists ⇔ Strings

Strings can become lists by calling: list(s) making every character an element of
the list.

Strings can be splitted on a character through s.split(<string>)

‘’.join(L) joins elements of the list, L, based on the character between the single
quotes.

Mutable and Immutable

Strings and tuples are immutable meaning that they cannot be modified.
Attempting to change it will result in an error. To avoid this, you can bind your
variable to a new object.

This was implemented by the developers because it is good to know that you can
have information without the fear of it being changed at some point in your
program.

Copying Levels 0 and 1

Level 0: Aliasing

● Aliasing involves having two objects pointing to the same object in memory.
Changes to the object in memory change the objects that are pointing to it.

Level 1: Shallow Copy

● This is where we create a copy of a list and not just having a shared pointer.
This means that a new data structure is created, but elements are shared.

○ import copy
○ L1 = [...]
○ L2 = copy.copy[L1]

Copying Level N

Level N: Deep Copy

● Deep copying improves upon Level 1 by creating clones at every level of the
original structure. Making any changes to the first structure would not affect
the second structure.

○ L1 = [...]
○ L2 = copy.deepcopy(L1)

Dictionaries

At the moment, we have learned lists and tuples which allow us to store
information. However, When we want to store information that is tied together, we
cannot group this without creating more lists/tuples.

To combat this issue, we have dictionaries.

Dictionaries store pairs of data: key and value.

● dictionary1 = {<objecti>: <objecti>}

Dictionaries Lookup and Operations

To return the value associated with a key, we look up the key by doing the
following:

● dictionary1 = {...}
● dictionary1[<keyi>] # returns the value or KeyError

Operations

● Add an entry: dictionary1[<new_key>] = <new_value>
● Test if a key is in dictionary1: Use “in”
● Delete an entry: del dictionary1[<key>]
● Change an entry: dictionary1[<desired_key>] = <new_value>

Dictionary Operations Continued

To obtain the keys of the dictionary, we do:

● dictionary1.keys() # returns dict_keys([...])

To obtain the values of the dictionary, we do:

● dictionary1.values() # returns dict_values([...])

To obtain the items of the dictionary, we do:

● dictionary1.items() # returns dict_items([...])

Branching: Booleans and Conditionals

The boolean type has two values: True and False

● Logical Operators: not, and, or
● Comparison Operators: >, <, >=, <=, ==, !=

Conditionals:

● if <condition>:
○ <expression> # or “pass”

● elif <condition>:
○ <expression>

● else:
○ <expression>

Iteration

Control Flow

While Loops:

● while <condition>:
○ <expression>
○ …

For Loops:

● for <variable> in <sequence of values>:
○ <code>
○ range(start, stop, step)

■ You can omit start and step if 0 and 1,
respectively

● break statement

For Loops Both While
Loops

- Fixed
number of
iterations
- Can easily
be rewritten
as a while
loop

- Both can
end early
with a break
statement

-
Unbounded
number of
iterations
- Needs an
initialized
counter
- Cannot be
easily
rewritten as
a for loop

#Section 2:
Algorithms and Time

Complexity

Algorithms

In short, an algorithm is an ordered finite sequence of steps created to solve one
or more problems, extract certain qualities from input, or produce a certain result.

Branching refers to the structure of most algorithms– specifically, the “paths” an
algorithm may take at each of its “junctures,” or conditionals, are considered
“branches” of the algorithm.

Search Algorithms

Time Complexity

We use “big-O notation” to represent
the order/magnitude of the worst case
number of steps, and thus runtime, of
an algorithm.

● We don’t care about coefficients or
constants

● Only take the term with the
biggest limit

Time Complexity

Common:

O(1) – index calling

O(log n) – search (e.g. binary)

O(n) – summing a list

O(n log n) – various sorts

O(n2) – iterating over a list twice
(comparison of elements)

O(2n) – binary tree traversal (height n)

Complexity of Search Algorithms

Hidden Complexity

Functions

What is a function? (math)

A function is some series of mathematical processes that takes input (one or
several) and produces one output.

What is a function?

A function is some series of steps or
transformations that may take input and
must produce output.

In python, inputs to a function are optional

● Note that they may still use random
processes, so they are
non-deterministic.

● Functions must produce output. If you
do not provide a return value, the
function will return None.

Parameters and return values

In python, functions are
declared with a keyword
called “def” which is short
for define.

On the right is the syntax.

In python, functions are
procedures, and can
sometimes be treated like
objects, as both inputs and
outputs.

Function Example

Scope

Functions cannot access all variables in a code. They can only access variables
they have been given, variables they have declared, or variables otherwise within
their scope.

● Also true in classes, which you will see later.

Lambda Functions

● Also called anonymous functions
● Functions expressed in “one line” without definition

Example Code (Functions)

Recursion

Recursive vs Explicit Definitions

Recursive vs Explicit Definitions

Recursion vs Iteration in Programming

Iteration is just like before – for and while loops
- In comparison to recursion, focus on while loops

Recursion – at its base, the process of letting a function call
itself

These are interchangeable processes

Something’s not right here…

The Right Way

● Steps:
● Base case / exit condition – case of

function input with non-recursive
return statement

● Recursion case – often an “else” for
things that don’t meet the exit
condition, calls the function again with

○ Transformation of input – extremely
important

○ Retention of previous data

Example Code (Recursion)

#Section 4:
Classes and object

Oriented Programming
(OOP)

What are objects? How is OOP useful?

Objects have a type that defines the characteristics of the programs that work with
them. They are are instance of a type.

A type captures an internal representation and an interface. This means that it has
data attributes and defined behaviors.

OOP groups data together into packages and allows for divide-and-conquer
development. This allows for code to be reused through classes.

Basics of Classes, Attributes, and Methods

Creating a class is very different from using an instance of the class.

● Creating entails defining its name and attributes
● Using an instance entails creating and doing operations on new instances.

Attributes are the “characteristics” that belong to a class. (Ex: age and height of a
person)

Methods are the functions that work within the class and handle the attributes.

Credit to 6.100A
Lecture Notes

Hierarchies and Inheritance

Parent Class > Child Class

● Child class inherits the parent class’s data, behavior, and methods.

Credit to 6.100A
Lecture Notes

Final Remarks

Thank you for attending our class! We hope that you learned something through
this rushed version of 6.100A.

Best of wishes to the current seniors and their applications for college. You got
this!

Exit Survey:

● https://forms.gle/MAZRk6LnY25rbGrD9

Last but not least…
raffle time!

